* ONOMA:ELVIS PAPA * * AEM: 952 * * email:papa@uth.gr * * Tmhma: A * *********************************QUIZ 2**************************************** 1) ->D Dikaiologhsh: Θεώρημα Ενδιάμεσης Τιμής(1-D): Αν f συνεχής στο [α, b] και sign(f(α))? sign(f(b)) τότε υπάρχει ένα τουλάχιστον x* στο [α, b] τ.ω. f(x*)=0. 2) -> B Dikaiologhsh: f(x)=xe-x - 0.3 a f(a) b f(b) c f(c) 1h epanaphpsh: 1 0,0678 5 -0,2664 3 -0,1507 2h epanaphpsh: 1 0,0678 3 -0,1507 2 -.0,0293 3h epanaphpsh: 1 0,0678 2 -0,0293 1,5 0,0347 3) -> D 4) -> C Dikaiologhsh: f(x)=x^2 Den boroume na efarmosoume thn methodo tou Newton afou h synarthsh mas einai pada mh arnhtikh me monadikh riza x t.w. f(x)=0 na einai to x=0.Synepws h methodos tou Newton den borei na efarmostei. 5) -> C Dikaiologhsh: F(X)=X^2-R,apo methodo tou newton exoume:Xi+1=Xi-F(Xi)/F'(Xi) =) Xi+1=Xi-Xi^2-R/2Xi =) Xi+1=(2Xi^2-Xi^2+R)/2Xi=1/2(Xi+R/Xi) 6) -> C Dikaiologhsh: F(X)=X^2-4 , X1=3 , F(X1)=5 , F'(X1)=6 X2=X1-F(X1)/F'(X2) =) X2=3-6/5=2,167 7) -> B Dikaiologhsh: Apo methodo tou newton exoume: X3+1=X3-F(3)/F'(3)=X3-F(3)/tan57=3-5/1.5328=-0.247 8) -> Pinakas Dikaiologhsh: Gia arxikh timh 0 h methodos tou Newton adynatei na lusei to F(x)=0 giati F'(0)=0 kai to F'(0)=0 vriskete ston paranomasth. Gia arxikh timh 5 exoume: x F(x) F'(x) h 5 121 75 1.613333 3.38867 34.843422 34.408601 1.012636 2.374034 9.380144 16.908112 0.554771 1.819263 2.021247 9.929153 0.203566 1.615697 0.217739 7.831430 0.027803 1.587894 0.003727 7.564222 0.0004927 Gia arxikh timh -2 exoume: x F(x) F'(x) h -2 4 12 0.333333 -2.333333 -16.703698 -16.333328 1.022675 -3.356008 -41.798012 33.788369 -1.237053 -2.118955 -13.514045 13.469910 -1.003276 -1.115685 -5.388752 3.734259 -1.443057 0.327372 -3.964914 0.321517 -12.33189 Parathroume pws o algorithmos Newton gia thn sygkekrimenh periptwsh apotygxanei logw mh kalou arxikou shmeiou afou to h apoklinei sinexws apo to 0. 9) -> D Dikaiologhsh: Parathrwntas tis times twn parapanw pinakwn vlepoume oti me prosegish 4 epitygxabetai akriveia se 2 shmadika pshfia. 10) -> A Dikaiologhsh: F(x)x^2-R , F'(x)=2x Apo methodo temnousas exoume : xi+1=xi-F(xi)/[(F(xi)-F(xi-1)))/(xi-xi-1)] =) xi+1=xi-xi^3-xi^2*(xi-1)-R*xi+R*xi-1 ... prakseis..... =) xi+1=(R+xi*xi-1)/xi+xi-1 11) -> A Dikaiologhsh: F(x)=x^2-4 , xn=3 , xn-1=4 Apo mthodo temnousas exoume : xn+1=xn-F(xn)/[F(xn)-F(xn-1)/xn-(xn-1)] = xn - ((xn^2)-4)*(xn-(xn-1))/xn^2-(xn-1)^2 = 3 - (3^2)-4*(3-4)/9-16= 0.5714 12) -> B Dikaiologhsh: Xo=3 , F'(3)=tan57=1.5398 Apo methodo temnousas kai lamvanwdas ypopsh tis parapanw synthhkes exoume: xn+1=xn-F(xn)/1.5398 = 3 - 5/1.5398 = -0.24704 13) -> B Dikaiologhsh: Parathrwdas thn grafikh parastash ths synarthshs F(x)=cosx parathroume pws sta shmeia π/4 kai 3π/4 isyei F(x)!=0 kai epipleon F'(π/4)=0 kai F'(3π/4)=0.Synepws oi arxikes prosegiseis π/4 kai 3π/4 den einai katallhles me thn methodo ths temnousas.